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ABSTRACT 

In this paper, the new gauge formulation of the electromagnetic interaction 

theory, containing the “fundamental length ” R as a universal scale like fi and c, is 

worked out. If an interaction is switching off, the resulting free theory, written in 

terms of momenta, happens to be formulated in the &dimensional de Sitter p- 

space, with the curvature radius W9.c. On one hand, it means that the configu- 

rational space of one particle can be treated as a quantized manifold, the size of 

granularities being sR. On the other hand, due to 3-dimensionality of the mass 

shell p2 = m2, such a scheme is equivalent to the conventional free theory, based on 

the concept of the Minkowskian 4-momentum. 

In the new approach the electromagnetic potential becomes a 5-vector 

associated with de Sitter group O(4,l). The extra fifth component, called the T - 

photon, similar to scalar and longitudinal photons, does not correspond to an 

independent dynamical degree of freedom. Respectively, the new local gauge 

group is larger than the ordinary one and depends intrinsically on the fundamental 

length il. 

The gauge invariant equations of motion, replacing the Dirac-Maxwell 

equations, are set up in the framework of an appropriate Lagrangian formalism. 

The new formulation is minimal with respect to the 5-potential but is not so in 

terms of the usual 4-potential. As a result, the underlying physics looks much 

richer than the ordinary electromagnetic phenomena. The new scheme predicts the 
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existence of the electric dipole moments for charged particles, leading to a direct 

violation of P- and CP-symmetries, and the new universal correction to the (g - 2)- 

anomaly. Further, some new group of internal symmetry, SU, (Z), arises that can 

be used to describe the pee-symmetry of the electromagnetic interactions. It turns 

out that SD,(Z)-symmetry is violated by the 4-fermion type interaction, induced by 

r-photons, with associated coupling constant sa9.‘. This novel interaction might 

give rise to the u&mass difference and processes like u+ 3e, u+ ey, etc. 

In the limit R + 0, the new field equations turn into the Dirac-Maxwell 

equations for the electron, muon, and electromagnetic fields. So, one may consider 

our approach as a generalization in a profound way of the standard theory of 

electromagnetic interactions at small distances _< !Z (high energies > l/a). 

The upper bound for the fundamental length 9. is discussed taking into account 

the various experimental data. 

I. INTRODUCTION 

In this paper we shall discuss a generalization of the theory of electromag- 

netic interactions which is based on a concept of fundamental length. This new 

hypothetical constant we denote as II. Together with fi and c it is expected to 

regulate all microscopic phenomena. The quantity 

M = f&c (1.1) 

is called the fundamental mass. 

The idea of the existence of a new universal length, and therefore mass, that 

would fix a scale in 4-dimensional space-time, and therefore 4-dimensional 

momentum-energy space, was discussed in the literature of the last four decades in 

different contexts.‘-l4 
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Most of the people who tried to introduce a fundamental length into field 

theory, pursued a quite clear and practical goal: to cure the theory from the 

ultraviolet divergences. But it turned out that a theory can survive with this 

chronic disease, and work as a quantitative scheme, if it possesses genetically a 

renormalizability property. Nowadays, the principle of renormalizability has imper- 

ceptibly become one of the corner stones of the quantum field theory. As a result, 

interest in a fur..iamentaI length has almost died out (see, however, [ 15-181). 

The greatest triumph of the renormalization approach to the formulation of 

the quantum field theory is certainly quantum electrodynamics (QED). The 

predictions of QED agree with a number of highly precise experiments. An upper 

bound for the magnitude of the fundamental length, established in experiments on 

the test of QED at high energies, now is given by 

9, ,< IO-l5 cm . (1.2) 

The harmony and elegance of QED makes an impression which cannot be 

darkened even by the obviously algorithmic character of the renormalization 

procedure. It should be clear that the fundamental length hypothesis is first of all 

a challenge to contemporary QED. In other words, this hypothesis can survive only 

if it will lead naturally to modifying QED in a profound way. This would, of course, 

preserve or enhance its aesthetic appeal. 

The crucial advantage of QED is that the form of the interaction in this 

theory is dictated by gauge symmetry arguments. It is called the minimal 

interaction principle and is symbolized by the following substitution law: 

pv + pp - e,Au(x) . (1.3) 
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This substitution leads one to the inhomogeneous Dirac-Maxwell equations for 

“bare” fields 

W- e,JXx) - m,)Jl(x) = 0 

a F’“(x) = 
ax’ 

e,T(x) y ’ tix) 

where the field strengths are defined as 

Fan = ad%) _ at:(x) 

axV v 

(1.4a) 

(1.4b) 

(1.5) 

Let us mention, to be complete, that local gauge transformations of the fields 

I)(X), T(x) and A(x) leaving Eqs. (1.4a)-(1.4b) invariant are given by: 

Q(x) + e 
ie,X(x) 

44x1 

TO * e 
-ie,X(x) _ 

l)(x) 

ai $,(x) + A $x, - - 
ax )1 

; X(x) = X*(x) . 

(1.6a) 

(1.6b) 

The rule (1.3) does not contain any scale like 9. or M and for this reason is 

universally applied to all space-time intervals and to $J values of 4-momenta.* - 

Therefore, if one adopts the fundamental length hypothesis it means that in the 

domains 

* 
In p-representation the hermiticity condition of X-function, evidently, becomes 

XT(p) = M-p) - (IAd 

ExcltjcJing the constraint (1.6c), the function X(p) is completely arbitrary in the 

Minkowskian p-space. 
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1x1 < 9, (1.7a) 

IPI ,M (1.7b) 

the substitution law (1.3) and its consequences are probably invalid or incomplete. 

Let us consider just one consequence of (1.3). Choosing eoAu = const = k,, we 

obtain, obviously, zero field strengths: Fu,, = 0. But the corresponding substitution 

(1.3) is not yet an identity transformation, namely 

This is a pseudoeuclidean parallel shift transformation of the 4-dimensional p- 

space, testifying that a geometry of this space is a Minkowskian one.* 

One may conclude now that our fundamental length hypothesis challenges the 

Minkowskian structure of the momentum 4-space in the region (1.7b). But if the 

momentum 4-space is not everywhere pseudoeuclidean, then what is a reasonable 

*Let us point out in this connection, that the condition eoAu = const., due to (1.6b), 

admits only those functions X(x) that are linear in x: 

X(x) = x0 + (qx) . 

It gives for Q(x) and 3~): 

ie X 
$44 + e 

00 eiqx $ (x) 

T(x) + e 
-ieoXo 

eeiqx T(X) 

(1.8) 

Up to an unimportant phase factor this is the transformation law of the wave 

functions under translations (1.8) with ku = q,,. 
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alternative? According to a general geometrical classification, the (pseudo)- 

euclidean spaces are those with zero curvature. ~ Their closest neighbors are spaces 

with nor-zero constant curvature. In the present 4-dimensional case, these curved 

spaces are so-called “de Sitter spaces.” 

Let us try to impose on Y-momentum space the de Sitter geometry realized 

on the one-sheeted 5-hyperboloid 

Po2-P12-P22-P32 - M2p42 = - M2 . (1.9) 

The curvature radius M we identify with the fundamental mass (1.1), assuming that 

this quantity is large enough (cf. (1.2)). Note that Eq. (1.9) places no constraint on 

timelike 4-momenta, and it is therefore not in conflict with the construction of 

Fock space and Poincare’ invariance of the S-matrix.* 

Since the mass shell hyperboloids 

*Besides (1.91, there exist only one more de Sitter space satisfying the 

correspondence principle at M +m , namely 

po2 - p12 - ~2’ - p3’ + M2p42 = M2 . 

But in this geometry we are faced with the universal upper bound for time-like 

momenta 

which is inconsistent with the implementation of a unitary representation of the 

Poincarg group on Fock space. 
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P2 l2 =m 

P2 22 =m 

. . . 

can be equally well embedded into de Sitter p-space (1.9) or in flat Minkowskian p- 

space, free physical partides cannot distinguish these two geometries. Actually, 

only virtual (interacting) particles can probe the geometrical structure of 4- 

momentum space. 

In the “flat limit,” i.e., in the region of small virtual momenta 

IPI << M , (1.10) 

one can neglect the curvature of de Sitter p-space, and therefore the new 

formalism reduces to the ordinary theory. In this domain the parallel shift (1.8) is, 

up to terms of order l/M’, a symmetry transformation of de Sitter momentum 

space ( 1.9). 

For virtual momenta belonging to the region (1.7b), the curvature of de Sitter 

p-space becomes a crucial factor. It means that the old (Minkowskian) and new (de 

Sitterian) formalisms should lead to quite different descriptions of particle 

interactions at small space-time intervals. 
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A general approach to the construction of quantum field theory on the basis 

of de Sitter p-space has been put forward and investigated in the papers [19-29].* 

Now we are interested in the QED case and therefore we would like to point out 

that in the region (1.7b) the p-space (1.9) does not possess even any approximate 

symmetry under the shift (1.8). This indicates indirectly that the standard local 

gauge theory techniques based on the relations (1.6a), (1.6b) and (l-3), should be 

given up in a new (de Sitterian) version of QED. 

It is dear, of course, independently of arguments connected with p-space 

geometry, that, in a theory that is based on a concept of a fundamental length, the 

notion of a local gauge group should be revised or generalized in some nontrivial 

manner. However, geometrical or group theoretical arguments allow it to be done 

in an essentially unique way. 

Indeed, one can easily realize that, in de Sitter p-space (1.9), X-functions 

parametrizing the gauge transformation in question, may be written as follows: 

A(Po,G, P4) = 6 PO ’ -“p’ - M2p4’ + M2 (1.11) 

with the hermiticity condition inherited from (1.6~): 

*The use of such a momentum space in a field theory was pioneered in Refs. 4 and 

8. The list of other papers on this subject can be found in Ref. 20. In Ref. 10, the 

field theory with the momentum space of variable curvature was discussed. We 

should point out that in all previous attempts to employ a non-eudidian p-space, 

Poincarg invariance of the theory was not maintained. The concept of nonlocal 

electromagnetic field based on ideas which were close to a non-euclidean 

momentum space hypothesis, holding Poincare’ invariance, was developed many 

years ago in Ref. 3. 
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x’lp, P,) = X(-P, PQ (1.12) 

The next step is connected with the following observation: if 

X(P, ~4) = & I e 
-ipx - ip4r 

x(x, -c)d4xdr , (1.13) 

then 

2 a2 ocM - 
aT2 

-M 
3 

X(X, T) = 0 

.x(x, T)+ = x(x, 7) (I.141 

So, in the new scheme, the gauge functions X may be treated as local functions of 

five variables (xp, r), with the obligatory constriants (1.14). The extra space-like 

variable r can be interpreted, due to its commutativity with the Poincari group 

generators, as some internal parameter of the theory. 

All X-functions which parametrize the conventional gauge transformations 

(1.6a)-(1.6b), can be found among the functions 

A(x, 0) = 
1 ,- eiPX + “2 6(po2 _ s2 - M2p42 + M2)“x(p, p4)d5p 

(2 llj4 
r= 0 ’ 

El-$ 
(2=14 

eipx X(p)d4p (1.15) 

where 



A 

X(p) = 

-lO- 

U- P, 1 +-E 
.: 
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) +qp.-.) 
r I +-E 

M2 

The inverse statement is not true: knowing X(p) one cannot reconstruct 

entirely the function x(p, p,) and, respectively, 1(x, ~1. Hence, the class of X - 

functions designed to describe new gauge group transformations is larger than the 

conventional one. 

Since the localization of the new gauge group happens to be connected with 

the dependence of i-ts parameters on the five coordinates (xu, r), the relevant 

gauge vector field, i.e., the electromagnetic potential, has to be a 5-vector as well. 

The concept of electromagnetic 5-potential, local gauge transformations in 

terms of X(x, T) with the constraints (1.4) and appropriate gauge invariant theory of 

free were worked out in Ref. 30. The goal of the present 

paper is to transfer to the new geometrical arena the principle of the minimal 

electromagnetic interaction and to derive, along these lines, the appropriate 

generalization of the Dirac-Maxwell equations (1.4a)-(1.4b). Since the ordinary 4- 

dimensional space-time is embedded in our 5-dimensional manifold and new gauge 

group parameters remain local functions of (x0, 2, one may expect that the 

conceived theory can be projected on the 4-dimensional space-time and turned into 

some sort of a local field theory containing the fundamental length 5’, as a 

parameter. 

Later on we shall employ, as a rule, units in which 

fi=C=k?=M=l (l.Ih) 

The following 5-dimensional notations will also be applied: 
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1. Metric 5-tensor 

(gLM) = (g,,) = ; L,M = 0,1,2,3;4 . 

2. 5-dimensional momentum 

(p? = (PA, p4) = (E, & P”) = (gLMp,) . 

3. The de Sitter surface (1.9) 

LM 
g pLpM = L M = -1 gLMP P 

4. 5-dimensional radius-vector 

(XL) = (x”, x4) = (t, z, T) = (gLMxM) . 

Relevant differential operators: 

; L = 0,1,2,3,4 

a2 
Fi L”aLaM = o- - 

aT2 
zo . 

. 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

5. The 5-vector corresponding to the origin of a coordinate system in de 

Sitter p-space (1.19) (“vacuum momentum”*) 

* 
This very useful “spurious” 5-vector was introduced in the field theory with the de 

Sitter p-space by LE. Tamm.20 



-12- FERMILAB-Pub-78/70-THY 

(VL) = (0, 0, 0, 0, 1) . (1.22) 

6. 5-dimensional electromagnetic potential 

(AL(x, T)) = (A’(x, T 1, A4(x, .c)) . (1.23) 

The more fundamental object, having a clear geometrical meaning in the 

fiber bundle theory* context, turns out to be the following 5-vector 

BL(x, T) = eicvx) AL(x,, ) = eWiTAL(x, .c) 

= gLM BM(x, T ) (1.24) 

This quantity also will be referred to as the 5-potential. The extra 

component B4(x, T) (or A4(x, T)) is cailed the T-photon. 

7. 5-dimensional field strengths3’ 

a BL(x, T) aBM(x, ~1 
qMtx,’ ) = axM - axL = 

= gLRgMs yRS(x, T) L,M,R,S = 0,1,2,3,4 . (1.25) 

The strategy that will be followed further on is based on transferring the new 

features of the free electromagnetic theory developed in Ref. 30 to the theory of 

massive particles. This is prompted by past experience. 

* 
Another name for this formalism: layered space theory. 
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Indeed, let us give a retrospective look to the relatively recent history of the 

fundamental theory of matter. The Maxwell equations for a free electromagnetic 

field are relativistically invariant and gauge invariant by their nature. Both of 

these invariance properties were transferred to the theory of particles with mass. 

The first one led to the special theory of relativity. The second gave rise to the 

minimal interaction principle which we discussed above. 

The quantum theory of electromagnetic radiation and the concept of the 

photon itself were the first signs of the contemporary quantum theory. Let us 

recall also what heuristic meaning the wave properties of light quanta had for de 

Brogle’s hypothesis. And, of course, the expression “optical-mechanical analogy” 

speaks eloquently for itself. 

What can this historical excursion teach us? It shows that a careful study of 

the pure electromagnetic field seems to be very instructive preparation before 

venturing to take the next step in the development of a massive particle theory. 

Therefore, in Section II we summarize the most important concepts related to 

photons in our approach, based on the De Sitter p-space. The rest of the paper is 

arranged as follows. Section III is devoted to the formulation of the free Dirac 

theory in new terms. In Section IV, we discuss the interaction between 

electromagnetic and charged fields governed by the new generalized gauge 

principle. Section V contains the physical analysis of the picture obtained. In 

Section VI we make concluding remarks. 
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II. THE FREE ELECTROMAGNETIC FIELD 

As we already mentioned, the equations of motion for all five components of 

electromagnetic potential in a free case have been set up in Ref. 30: 

(0 - ~)A’(x,T) = 0 ; I.l,V = 0,1,2,3 

It is easy to see that Eqs. (2.1) can also be written as follows: 

iT,(X,T) = 0 

2B4(x,r ) - i & B4(x, T) + i 
aB,(x, T 1 

ax = 0 
V 

aFv(X3 T) = o 

axV 

(2.la) 

(2.lb) 

. (2.lc) 

From Eqs. (2.la)-(2.lb) or Eqs. (2.2a)-(2.2b), one obtains automatically 

(0 - 1)A4(x, T) q (0 - l)(eiTB4(x, T)) = 0 . 

(2.2a) 

(2.2b) 

(2.2c) 

(2.3) 

Further, one can verify that Eqs. (2.2) are invariant under the common gauge 

transformation 

B”(x, T) + B”(x, 7) - & (eeiT x(x, T.)) ; M = 0,1,2,3,4 
M 

(2.4) 
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with the following constraint on functions X(x, T): 

(0 - l)X(X,T ) = 0 

(c.f. (1.14)). The second condition from (1.14) 

X(x, 4 = x(X, -T) 

together with (2.4) leads to the relation: 

t 
BM (x, T ) = (B yx, -T), -B4(x, -r)) 

(2.5a) 

(2.5b) 

(2.6) 

that can be given two-fold interpretation, namely: 

i) generalized neutrality condition of the electromagnetic field; 

ii) transformation law of the 5-potential B”(x, r ) under r-inversion. 

T+ -T (2.7) 

Further, it is easy to check using (2.6) that all new equations of motion (2.2)-(2.3) 

are invariant with respect to (2.7). Observing that 

& (,-IT x(x, T)) = 1 
LM 

le 
a-$ ~x,-c 1 Q-l(x,r 1 

0 ( M ) 

where 

Q(x,T) = e 
ieoeTi ‘X(x, T) 

I 

(2.8) 

(2.9) 
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one can consider (2.9) as a “matrix” form of new gauge group transformation. Due 

to (2.5b), the plane 

r=O 

is remarkable in that the quantities 

0 (x, 0) = e 
ieoX(x, 0) 

(2.10) 

(2.11) 

are unitary and describe the conventional U(1) gauge transformations (c.f. (1.15)). 

Further, 

BV(x, 0) + Bp’(x, 0) - aMx, 0) 
ax 

P 
(2.12) 

and therefore one can treat Bu(x, 0) as an ordinary electromagnetic 4-potential: 

Bu(x, 0) z Ap(x) (2.13) 

Correspondingly, the 4-tensor 9Y 1 x, r on the plane (2.10) should be identified 

with the Maxwell field strengths (1.5): 

flv(,, 0) = FVv(x) 

But as a matter of fact, owing to the identity 

a2WV aF4 aFp 

ax4 
+ ax + axv = 0 

I-r 

(2.14) 

(2.15) 
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and Eq. (2.2a), the quantityy”(x, T) does not depend on t at all: 

Hence, 

TV’” lx, T ) = P”k, 0) 

and Eq. (2.2~) is just the free Maxwell equation for the field strengths (2.14): 

aF”Yx, = o 

a X” 
. 

(2.16a) 

(2.16b) 

(2.17) 

Later on we shall call (2.10) the physical plane. The gauge transformation (2.121, 

attached to (2.10), together with the r-independent Maxwell equation (2.17) will be 

referred to as the 4-sector, and the general gauge transformation (2.4), together 

with Eqs. (2.2aj-(2.2b), as the 5-sector, respectively. One may say that 4-sector 

Eq. (2.17) plays the role of a “boundary condition” at T = 0 that completes the 5- 

sector Eqs. (2.2a)-(2.2b). 

Note that, due to (2.16)-(2.17), we actually can weaken the de Sitterian 

constraint (2.1~) and require its maintenance on the physical plane r = 0 only: 

[(O - lh ,,k, T) I =o . (2.15) 
-r=o 

As was shown in Ref. 30, the r-photon component B4(x,r ), like the scalar and 

longitudinal components, does not correspond to an independent dynamical degree 

of freedom and can be excluded by an appropriate gauge transformation (2.4). The 

new gauge group turns out to be large enough to carry out such a procedure. 
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To make this statement clearer let us decompose Bu(x, t) in terms of its 

transverse and longitudinal 4-parts 

B (x T) = B L(x T) + B “(x t) 
IJ ’ P ’ )1 ’ 

as 1(x, T) ae “(x, T) aBJx, .c) 
ax =o , ax = -ax . (2.19) 

!J u IJ 

Then the 5-sector equations (2.2a)-(2.2b) become: 

aB 1(x, T) 

aT = 0 (2.20) 

and 

aB “(x, T) aB4(x’ T) 

aT - axe = O 

aB4(x, ‘c ) aB “lx, d 
2B4(x,T)-i aT ci “aX = ’ 

V 

(2.21) 

We can see now that the spin one components 8:(x, T) actually do not 

depend on ‘I (c.f. Eq. (2.16a)). All T -dependence is concentrated in Eqs. (2.21) des- / 

cribing simultaneously spin zero photons and T-photons. These equations look like a 1 

gauge constraint imposed on the 5-potential BtJx, T). It is readily verified using ~ . . 

the gauge transformations (2.4), that the components Bu” and B4 can be \ 

eliminated, so each of Eqs. (2.21) converts into the identity 0 = 0. ~ 

The following question seems to be relevant now: why is a consideration of 

the 5-sector necessary? The 4-sector evidently provides us with the conventional 
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description of the free electromagnetic field. Therefore, the 5-sector appears to 

overdescribe this field and looks superfluous. 

The existence of two or more mathematical formulations of the same free 

field theory is familiar. A deviation of one approach from another may be revealed 

when one begins to describe interactions. It is usually connected with a difference 

in symmetry properties embodied in the free equations. 

Obviously, if we ignore then 5-sector completely, then we will deal with the 

standard 4-dimensional gauge transformation (2.12) and finally be led to the 

Maxwell-Dirac theory of electromagnetic interactions based on Eqs. (1.4). On the 

other hand, as one already knows, 5-sector Eqs. (2.2aM2.2b) possess the new 

symmetry properties in which our fundamental length hypothesis is essentially 

reflected, namely: 

i) They are invariant under the more general gauge transformations (2.4); 

ii) They are invariant under T-inversion (2.7). 

Therefore, keeping in mind our general strategy (see the end of Section I), we 

adopt the formalism of a 5-component* free electromagnetic field, described by 

the whole set of Eqs. (2.2a1, (2.2b) and (2.17), as a pattern for a construction of a 

general theory of electromagnetic interactions. So the new local gauge transfor- 

mations (2.4) for the 5-potential BM(x, ‘c) and those with the “matrix” (2.9) for 

charged particle fields and the t-inversion transformation are destined to play a 

fundamental role in the new approach. Further, one may expect that the theory in 

question should be split, as in the just considered free case, in 5-sector and 4- 

sector. The 5-sector equations of motion have to be set up in all 5-space and be 

* 
By analyzing interacting fields, we shall see that the ~-photon degree of freedom, 

like other pseudophoton components, will revive to play an important mediating 

role in an interaction. 
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invariant under new gauge transformations and the -r-inversion. The 4-sector 

equations, ascribed to the physical plane T = 0 where the conventional gauge group 

is operating (see (2.11) and (2.12)), have to be consistent with the 5-sector 

equations and serve as a specific “boundary condition” for them at T = 0. It is also 

crucial to realize that the 4-sector equations should play the role of a 

generalization of the Dirac-Maxwell equations (1.4a)-(1.4b). 

Coming back to the theory of free electromagnetic field, we may observe 

that the 5-sector Eqs. (2.2a)-(2.2b) are the Euler-Lagrange equations for the 5- 

dimensional action integral 

where the Jagrangian 5-density pMAXWELL(x, T ) is given by* 

*Note that due to (2.6) 

6 6 6 

6Bv+k, T) 6(B4(x, T I)+ 
= - 

6B4(x, -T) 

(2.22) 

(2.23a) 

The increments of the field derivatives are defined in a usual WaY 

$(sBu(x, T)), . . . 
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52 MA~~ELL(X,’ ‘d =da+ , MAX\VELL(~, 7) =-2(B4(x, T N+B4(x, ~1 + 

t aBJx, 7) aBpt(x, T) 
13’ k, 7) aT - a7 B%, T) + 1 
(B4(x,r))+ $ - + 

+ i (Bp(x,r)) t aB4(x, 7) 

axp 
- B’(x, T)(~‘;;; ‘3 

t 1 (2.24) 

Since 

a 9MAXWELL(XS7 ) 
aB (x, T) 

z 0 

a 
ax0 

we are dealing with a so-called singular Jagrangian. 31-36 This circumstance will be 

essential for the quantization procedure. 37 

Let us consider now the 4-sector, i.e. the Maxwell equation (2.17). The 

relevant action integral is well known: 

- j- x F,,” (x)F’“(x)dx z j. LMAXWELL(x)dx , 

In contrast to (2.221, the increments that we should give here to the 

functional arguments AV(x) = B p(x, 0) do not depend on T : 

(2.26) 

(2.27) 

a$ (c%,jx)) = 0 . 

As a result, due to (2.23b), 

(2.28) 
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6(aBf0)) =o . (2.29) 

Projecting the 5-sector Eqs. (2.2a)-(2.2b) onto the physical plane 'I= 0, one 

finds 

i<,(x,O) = J( aBi:O) -~~~‘“)) = 0 (2.30a) 

2B4(x, 0) - i 
aB4(x’ 0) aA” 

a7 +i ax = 0 . (2.30b) 
” 

The relation (2.30b) just fixes a gauge of electromagnetic 4-potential Au(x)* 

and evidently does not conflict with Eq. (2.1). Owing to (2.29) 

‘-------i 
Actually B4(x, 0) and 

aB4(X, 0) 
a7 in (2.30b) are completely arbitrary functions of x. 

Putting 

B4k 0) = & .f 

l+p2,0 

c J(p)eiPx d4p 

B4(x, 0) - i $7 B4(x, 0) = --$- 
(21,)3 2 

I c,(pk bxd4p 

I+p2,0 
(2.31) 

with cl+(p) = c,(-p) and c2’ (p) = c,(-p), one can express in terms (2.31) T solution 

of Eqs. (2.3): 

B4(x, T) = $ 

. I 

-f e 
ipx 

cl(p)cos 7 1 + p d p I/--z4 + 

1 +p2 20 

+i .I- eipxc2(p) sin-r Jz d4p J + (2.32) 

J+p2 ~0 Ji-;;;z 

We shall see in Sec. 4 that the t-photon field B4(x, T) continues to satisfy Eq. (2.3) 

in the presence of interactions as well. 
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6F4(X’ 0) 
GA”(x) = ’ (2.33) 

and therefore (2.30a) is consistent with Eq. (2.17) as well. 

III. THE FREE DIRAC FIELD 

Let us consider first a scalar field of massive particles just to acquire some 

terminology and notations. In the de Sitter p-space (l.J9), the mass sheJ1 equation 

p2-m2 = 0 (3.1) 

can be factorized in the following way 

p2 - m2 = (p4 - cash u)(p4 + cash d 

where 

coshu : m 

Due to the relation 

cash LI q 1 gLMpLVM 1 ; L,M = 0,1,2,3,4 

(3.2) 

(3.3) 

(3.4) 

u is just the “noneuclidean ” 4-distance between the point p and the L igin of the 

coordinate system (1.22), i.e. the exact geometrical analog of m. In the flat limit, 

correspondingly, 
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u =m (3.5) 

The factorization formula (3.2) and evident symmetry of the de Sitter p-space 

(1.19) under the inversion 

p4 + - p4 (3.6) 

lead to a possibility of an existence in the new scheme of two ‘Klein-Gordon type” 

equations: 21,24,25 

2(p4 - cash p1)@ ,(p, p4) = 0 

2(-p4 - cash d $$p, p4) = 0 

(3.7a) 

(3.7b) 

After the Sdimensional Fourier transformation one obtains from (3.7a)-(3.7b): 

-i & -coshp (3.8a) 

2 
a 

iTT-coshp @,(x,T) = o (3.8b) 

so 

$,(x, d = ir e cash lJ $I ,(x, 0) 

e2(x, T) = e -i T cash p 
@G 0) (3.9) 
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We call $I~ and $2 the normal and abnormal fields, respectively. This “flavor” 

clearly has no analog in the ordinary theory with II = 0 and is of a great importance 

for the present approach.* 

To specify c$,(x, 0) and Q2(x, 0) we need to take into account the de Sitterian 

constraint (c.f. (2.1~)) 

(0 - I)+,(x,T) = 0 , a = I,2 . (3.10) 

Since 

(fJ-l)$a(x,T) = e 
i ca~ coshu 

(0 + m2) $ a(x, 0) , 

a=l,2 ; El=1 , E2 = -1 

Eq. (3.10) is equivalent to the “weakened” de Sitterian constraint (c.f. (2.18)) 

c tfi - 1) $a(x, T) ] =o , a- 1,2 (3.11) 
T=O 

or 

(0 + m2)$aa(x, 0) = 0 , a= I,2 (3.12) 

Thus, in our terms, the conventional Klein-Gordon equations (3.12) for 

o,(x, 0) and o,(x, 0) play the role of the &sector of the free scalar theory. 

*It follows from Eqs. (2.la)-(2.lb) that in the Lorentz gauge, 
a 4, (x, T 1 

ax : 0, the 4- 
V 

potential Au(x, T) and r-photon component A4(x, T) satisfy, correspondingly, the 

normal Eq. (3.8a) and abnormal Eq. (3.8b), with !J = 0 in both cases. 
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Correspondingly, Eqs. (3.8a)-(3.8b) are the 5-sector in this case, with $,(x, T) and 

$I ,(x, T) replacing each other under the r-inversion (2.7) by definition:* 

‘t’,k, d 

with properties 

(3.13) 

Proceeding to a spinor field case, one might think that the corresponding 5- 

sector equations can be found as a result of the “extraction of the square root” 

from each bracket in the right-hand side of (3.2). To carry out such an operation, 

note, first, that the following identities 

2(p4 - cash d = g,,(p - V)K(p - V)L - 4 sinh2 p /2 

- 2 (p” + cash 11) = gKL(p + V)K(p + V)L - 4 sinh2 p /2 , (3.14) 

are held in the de Sitter p-space (1.19). Second, let us introduce the five matrices 

I-L = (r”, rl, r2, 3, r41 

*It turns out if $J is a neutral scalar field then within the ~framework of 

electromagnetic interaction theory 

a)(x) = @,(x) 

and the transformation law under T -inversion is given by Q+ (x, T) = 4(x, -T) (cf. 

(2.6)). 
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rKrL + r LrK = 2gKL 

(rK)’ = rOrKro ; K,L = 0,1,2,3,4 . (3.15) 

The minimal order of such T-matrices is equal to four. This corresponds to 

the fundamental (spinor) representation of the de Sitter group SO(4, 1). As is 

known, this representation is simultaneously an irreducible spinor representation of 

the improper Lorentz group O(3, 1). Therefore, we choose 

rL = I 
(Y”tY YY 

2 3 
, Y , -i us) (3.16) 

where TX = Cy”,; ) and y5 are ordinary y-matrices: 

YO’ (; O) f ;= ( “; f ) , Y5 = ( “, ;) . (3.17) 

Using the identity 

KL 
gKLA A = (A,P)(A,r L, (3.18) 

that is valid for an arbitrary 5-vector A L , one can obtain from (3.13) the pair of 

“Dirac type” equations 

[p-(p4-1)r4-2sinhu/21$L(p,p4) = 0 (3.19a) 

[p+ (p4 + l)r4 - 2 sinh p/2] I&&P, p”) = 0 , (3.19b) 
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normal and abnormal, respectively. 29-30 In (x, r)-representation Eqs. (3.19a)- 

(3.19b) become 

+i& T4+T4- 2 sinh u/2 $ ,(X, r) = 0 1 
c .a .a 4 4 

Is-lgr +r - 2sinhp/2 $,(x,r) = 0 1 . 

(3.20a) 

(3.20b) 

As for the de Sitterian constraint that should be imposed on Ijll(x, T ) and $ ,(x, r), 

we shall use at once its “weakened” form that is tied to the physical plane T = 0: 

HO- 1)$,(x, T)l = 0 ; a= I,2 
T=O 

(3.21) 

(c.f. (2.18) and(3.11)).* Combining Eqs. (3.19a)-(3.19b) and (3.21) leads one to the 

following equation of motion on the plane T = 0; 

(iJ- iy5(cosh u - 1) - 2 sinh u/2) +a(x, 0) = 0; a = 1,2 (3.23) 

Evidently, we should adopt Eq. (3.23) as the 4-sector equation for the Dirac 

free field in our approach. With the notation 

*It is easy to check that solutions of Eqs. (3.20a)-(3.20b), subjected to (3.21), satisfy 

automatically the exact de Sitterian constraint 

(0 - ~)*,(x,T) = 0 ; a = 12 . (3.22) 

As we have seen, a similar situation takes place in the theories of electromagnetic 

and scalar fields. 
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tanh u /2 = sin 8 , (3.24) 

Eq. (3.23) may be rewritten as follows: 

1 
g - m ebiey 5 $ a(x, 0) = 0 

1 ; a-1,2 . 

This equation is clearly equivalent to the ordinary Dirac equation for the wave 

function 

-i By5 
$,(x) = e 2 JI a(~, 0) , a = I,2 (3.25) 

Thus, our 4-sector is nothing more than the conventional theory of two Dirac free 

fields $,(x) (a = 1,2) with equal masses, where a is a label of the flavor distin- 

guishing the normal and abnormal fields. The corresponding lagrangian density can 

be written in terms of qa(x) and ‘s;,(x) simply as 

LDIRACW = a=! 2 TabSif- m)$,(x) 
f 

(3.26) 

Actually we are dealing here with a new kind of internal symmetry described 

by SU(2)-group, that will be further denoted as SUT (2). It should be rather dear 

that the SUT(2)-symmetry is one of the direct consequences of our fundamental 

length hypothesis. 

Coming back to Eqs. (3.20a)-(3.20b), one can guess that they represent the 5- 

sector of the free Dirac theory in our formalism. The key point here is a question 

of an invariance under T-inversion (2.7). Each of these equations taken separately 

is not invariant under (2.7) (c.f. Eqs. (3.8a)-(3.8b)). As a matter of fact 4- 

dimensional de Sitterian spinors like $,(x, T ) and $,(x, T) do not possess linear 
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transformation properties with respect to the inversion of the r-axis. It is 

qualitatively the same situation which occurs in the 2-component Lorentz spinor 

formalism when a space inversion operation is introduced. In that case, one needs 

to construct bispinors from 2-component wave functions. Here, we have to go to 8- 

component spinors which will transform linearly with respect to the improper de 

Sitter group O(4, 1). 

Putting 

f dX,T) , (3.27) 

one can combine Eqs. (3.20aM3.20b) as one equation for the 8-component object 

(3.27): 

iaMGM+ooxr4-2sinhu/2 ~(X,T) = 0 

where 

1 0 
u. = ( 1 0 1 

u GP = uox y = 
YP 0 

( 1 0 YP 

G4 = 03xr4 = 
(: -:4) = -i(: J) 

(3.28) 

C”GN + GNGM = 2gMN 

(GM)+ = G”GMGo (3.29) 
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Eq. (3.28) will remain invariant under the ~-inversion (2.7) if one defines the 

following linear transformation law for the wave function %‘!x,~ ) (c.f. (2.13)): 

Y’(x, T ) = TY(x, - T) (3.30) 

where T is the following 8 x 8matrix 

T= o,xE= 

It is easily seen that 

i) T2 = 1 , T+=T; 

ii)T(ooxrM)T = ooxr M; M=Ol234- t 3 t , , 

iii) TG4T = - G4 

(3.31) 

(3.32) 

Later on it will be convenient for us to use a special notation 

Q(x,T) = TY(x,-T) (3.33) 

and to write, in addition to Eq. (3.28), 

(iaMGM +oo x r4 - 2 sinh u/2)Q(x, T) = 0 . (3.34) 
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It is clear now that either of the two equations, Eq. (3.28) or Eq. (3.331, can be 

referred to as the 5-sector equation of the free Dirac theory in our terms. Intro- 

ducing the conjugated g-component spinors 

p(x, d = y+(x, T)G’ 

T(x,T) = Q+(x,-c)G” (3.35) 

one can construct the appropriate lagrangian Sdensity: 

9 DIR*& T ) = .Y+D~RA& T ) = 

= ; 1 ax, r)G”(aMY(x,T 1) - (a,%-c ))G”@(x,d + 

+ ~X,T )G”(aMNx, ~1) - (aM&r))GMYk, T) 1 + 

+ KT(x, r)(u, x r4 - 2 sinh ~/~)Y(x,T ) + 

+Hiji(x, du,xr ’ - 2 sinh d/2) @x, T ) 

Note, that, due to Eq. (3.28) and Eq. (3.341, we have a conserving 5-current: 

(3.36) 

J”(x, T) = fix, dG”@(x, T) ; M = 0,1,2,3,4 

aJ”k,T ) = o 

axM 
. 

(3.37a) 

(3.37b) 
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Further (c.f. (2.6)), 

(plx, T))+ = (JM(~, 4, - J~(x, -T)) P= 0,1,2,3 . (3.37c) 

Thus, we have reformulated the free Dirac theory along our lines. The new 

description is based on the set of equations for the S-component wave function 

$(x, T ) in which $J components of the 5-gradient a M = (a ~, a,) are presented on an 

equal footing: 

I (iaMGM + o. x I”- 2 sinh p/2)Y(x, +) = 0 

1 [CO - I)YY(x, T) I =o (3.38) 
T =o 

The physical plane ‘c = 0 in Eqs. (3.38) is singled out. It indicates that the 

largest group of continuous symmetry transformations admitted by Eqs. (3.38) is 

the standard Poincar6 group in the 4-dimensional configurational space: 

.p’ = Lpyxw + al-I (3.39) 

As one knows, on the plane ‘c= 0, due to Eqs. (3.38), the 4-sector Eq. (3.23) for the 

wave function 

4J ,(x, 0) 
Y(x, 0) = 

i i 
(3.40) 

II, 2w) 

is held. Further, this equation is equivalent to the conventional Dirac equation for 

each component of the SU., (2)-doublet 
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J,,(x) i 1 dJ,(x) = ( 
;i$Y5 0 

~ 0 
;i:y* 

Jl,(x, 0) 

h .i $2(X’ 0) 

sin 0 = tanh u/2 (3.41) 

(see (3.25)). It is of primary importance that the equivalency transformation (3.41) 

turned out to be a chiral one. Let us note also that the SUr (2)-symmetry of the 

free 4-sector happens to be the direct consequence of the invariance of the free 5- 

sector under the T-inversion. This is why we use the subscript r in denoting the 

group considered. 

IV. NEW GAUGE SYMMETRY GROUP AND INTERACTING FIELDS 

According to our general conception (see Sets. I and II) within the 5-sector 

the Dirac field has to share the new symmetry properties with the electromagnetic 

field. One such a symmetry connected with the -r-inversion has been transferred to 

Dirac particles in the previous section. As a result we have the SUr (2)-symmetry 

of the free Dirac 4-sector. 

Now we turn to the new gauge symmetry properties related to the 

transformation (2.4). As was pointed out already (2.4) is associated with a gauge 

group element (2.9). Therefore, let us require that the general theory of 

electromagnetic interactions be invariant under the following simultaneous local 

gauge transformations: 
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Y(x, T) + e 
ieoeVi ‘X (x, t ) 

YY(X,T ) 

dx, d + e 
ieoeiT X+(X, r ) 

Q((x, T) 

3x, T) + e 
-ieoeiTX+ (X, T) 

lY(X, T ) 

T(x,T.) + e 
-ieodi ‘A (X, ‘I ) 

ah, T) 

BM(x, d -t BM(x, ~1 - a-f&(e-iT X(X,T)) ; M = 0,1,2,3,4 

where, as before (see (2.5a)-(2.5b)), 

(0 - 1)X(x,-c ) = 0 

X+(x, T) = X(x, -4 (4.2) 

Further, to make our approach as unambiguous as the conventional theory of 

electromagnetic interactions, we should generalize the minimal interaction 

principle. It is clear that the new formulation of this principle, adequate to the 

local gauge transformations (4.1), can be associated with the following substitution 

law [c-f. (1.3)] 

- ia$ -+ i a:M - e. BM(x, ?) (4.3) 

Applying (4.3) to Eqs. (3.38) leads one to the following gauge invariant set of 

equations: 
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I 

[(i aM - eoBM(x, T ))CM + o. x T4 - 2 sinh u/2 I Y (x, r] = 0 (4.4a) 

i [gLM(aL + ieoBL(x,T ))(a, + ieoB&,r)) - 1 I 9’k-r) 1 =o (4.4b) 
7:O 

Due to (2.6), (3.32) and (3.33), we have also 

1 (i aM - eoBMt (x, r NGM + o. x r 4 - 2 sinh u/2] 0(x,-r ) = 0 (4.5a) 

[ gLM(aL + ieoBLt k, d)(aM + ieoBMt(x, ‘I]] - 1 ] C(X, r) = 0 . (4.5b) 
7 =o 

Eqs. (4.4a) and (4.5a) can be derived from the 5-dimensional action integral 

with the lagrangian 5-density 

s? DIRAC(&? ) - % [ J M( w)B~+(x,T)+ JM+(x,~]BM(x,,] 1 (4.6) 

where 2 DIRAC(~, r] is given by (3.36) and J”(x, T] is the 5-current (3.37a). 

Adding to (4.6) the Sdimensional lagrangian density (2.24) that corresponds to 

a free,electromagnetic field, one obtains 

9 I TO~~~(X, 7) = pMAXWELL(X’7 ) + ‘s;c?DIRAC(x* =) - 

- eo 
T J”(x, ,]B,+ (x, r] + J,’ (x, 7)B”(x, T)] . (4.7) 

This lagrangian density is obviously invariant under the new gauge transfor- 

mations (4.1) and the -r-inversion. The variation of the action integral 
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.f y&TAL(x, T )dxd? (4.8) 

with respect to BMt (x, 7 ) and ( aBM+(x, T))/( axN) leads to the inhomogeneous first- 

order equations for the 5-potential BM(x, 7): 

(4.9a) iq4(x, 7) = % Ju(x, 7) 

2B4(x, 7) - i $ B4(x, 7) + i 
33 (x, 7) e. 

fx = TJ4(X,7) . (4.9b) 
V 

Eqs. (4.4a), (4.5a), (4.9a) and (4.9b), being invariant to the new gauge 

transformations and to the T-inversion, play the role of the 5-sector equations in 

our description of interacting electromagnetic and charged spinor fields. It is 

easily seen from Eqs. (4&a) and (4.5a) that the 5-current (3.37a) satisfies, as in a 

free case, the continuity equation (3.37b) and generalized hermiticity condition 

(3.37~). Due to (2.6) the condition (3.37~) follows automatically from Eqs. (4.9a)- 

(4.9b). In order that Eq. (3.37b) be consistent with Eqs. (4.9a)-(4.9b) we have to 

require a validity of Eq. (2.3). Hence, the T-photon field permanently satisfies the 

exact de Sitterian constraint regardless of a presence or an absence of an 

interaction (see also the footnote on page 22 ). 

Let us proceed now to a derivation of the 4-sector equations attached to the 

physical plane 7= 0. First we project Eq. (4.4a) onto this plane using Eq. (4.4b). It 

gives: 

[ 
(i ap - eoAp)G’) - (cash u - l)uo x r4 + % (uo x r’+)(xLMqM(x, 0)) _ 

- 2 sinh u/2 ‘f’(x, 0) = 0 1 , (4.10) 

where 
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.zLM = &(G~G~ - G”GL) , (4.11) 

Au(x) is the electromagnetic 4-potential (2.13), and qM(x, 0) are the 5- 

dimensional field strengths (1.25) at 7 = 0. 

When the interaction is switching off (eo+ 0) Eq. (4.10) turns into free Eq. 

(3.23) with the mass operator containing the pseudoscalar y*-term. If we want the 

conventional Dirac equation to emerge in this limit, then, in advance, we should 

subject Eq. (4.10) to the chiral equivalence transformation (3.41). This leads to the 

following set of equations, instead of Eq. (4.10): 

ie, cos 0 
(LX- eo&- moNl(x) = ’ 4 @” Fuy (x)$,(x) - 

e. sin 8 

4 0u~“F~v(x)jlj(x)-‘~yF1~4G, ohjl(x) , (4.12a) 

(2 - eoB - mo)Ji2(x) = 

ieo cos 0 
4 O y5~U”FUv(~)~2(~) - 

e,sin 0 
4 o u”~FJx)$~(X) + i+yu<4(x, O&~(X) , (4.12b) 

where ou”= i/2 (-ru-r” - u”,“), Fu”(x) are the Maxwell field strengths (1.5) and 

aB (x, 0) 
2q4(x, 0) = ua7 - 

aB4(x, 0) 
ax 

lJ 
(4.13) 

are the components of 5-dimensional field strengths at r= 0 to which 7 -photons 

directly contribute. The particle mass is denoted as m. to emphasize that we are 

still dealing with “bare” fields. Correspondingly (see (3.3) and (3.24)), 

sin e 
0 

= tanh uo/2 = m , 
0 
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Eqs. (4.12a)-(4.12b) look like a nontrivial generalization of the Dirac equation 

(1.4a). Let us point out here some evident properties of equations obtained, 

postponing a more detailed analysis until the next Section: 

1. Eqs. (4.12a)-(4.12b) are consistent with 5-sector Eq. (4.4a). They can be 

treated simply as a boundary condition at T = 0, completed Eq. (4.4a). 

2. Eqs. (4.12a)-(4.12b) are invariant under the ordinary gauge transformations 

[ c.f. (1.6a)-(1.6b) 1 

ieoX (x, 0) 
$,(x) -+ e J,.(x) , 

Tag(x) + e 
-ieoUx, 0) 

Ta(x) , a = I,2 j 

A&x) +A 
if 

x)- axk 0) 

ax” 
, x (x, 0) = it (x, 0) 9 (4.14) 

which are a projection of the new gauge group (4.1) onto the physical plane r = 0. 

We do not need to consider here the gauge transformation of the r-photon 

component B4(x, 0) because it is involved in the gauge invariant structure (4.13). 

3. The left-hand sides of the considered equations contain the conventional 

minimal interaction term, whereas the right-hand sides consist entirely of non- 

minimal, namely: 

i) electric dipole moment (EDM) interaction (s y o 5 IJ” FJx)); 

ii) magnetic dipole moment (MDM) interaction also called the Pauli 

interaction term (s onwFuV(x)); 

iii) -c-photon interaction (*i y py(x, 0)). Such a name is chosen because 
u+ 

this interaction survives even if there are no “ordinary” photons (An(x) = 0) and, 

therefore, it could be induced only by the -r-photons. Note, that the T -photon 
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interaction terms enter with different signs in Eq. (4.12a) and Eq. (4.12b). This is 

the only source for a violation of the SY (2)-symmetry in the considered equations. 

The EDM term inevitably leads to the parity (P) violation and CP-violation. 

Let us notice that in free Eq. (3.23) one faces the fictitious P- and CP-violations 

disappearing after the chiraJ equivalence transformation (3.41). But applying (3.41) 

to Eq. (4.10), that contains an interaction, cannot eliminate the y5 entirely. 

It is crucial to understand that the conventional minimal interaction as all 

new non-minimal interactions in Eqs. (4.12a) and (4.12b) are originated by the 

minimal interaction in terms of the 5-potential BM(x, T) that was introduced by the 

substitution (4.3). One may also think that the P- and CP-violations revealed in 

present theory are a “price” for its invariance with respect to the u gauge 

group (4.1).* 

*However, C- and CPT-symmetries are held in our scheme and can be introduced 

naturally on a 5-dimensional level. For instance, the charge conjugation C is 

defined as follows 

Yk, T) -t G2YYX(x, -7) 3 

BM(x, T) + -BMn(x,T) 

(*~ denotes the complex conjugation). It is readily verified that Eqs. (4.4a)-(4.4b) 

remain unaltered after this transformation. Note, that all five components of the 

electromagnetic 5-potential change their signs under the charge conjugation. On 

the physical plane T = 0 we obtain, obviously, the ordinary C-conjugation rule 

$a(d + Y 2$a,x(x) , a = J,2 

A,(x) + - A,,(X) 

and, in addiction, 

T4cx, 0) + - q4cx, 0) 

; 

. 

The invariance of Eqs. (4.12a)-(4.12b) under these transformations is evident. 
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iv. If F,,(x) and F p4(x,0) in Eqs. (4.12a)-(4.12b) are 

fixed, then one can consider them as the motion equations of 

charged Dirac particles in an external electromagnetic field.The 

appropriate lagrangian density is of the form: 

L DIRAdX) + LINT(X) (4.15) 

where LIIIRAC(x) is given by (3.26) and 

LINI(X) = - 1 [’ 
eJ,(xh ‘$ a(xL4 ,W f 

a=1,2 
( I 

t 
ieocosB 

4 
o~~a(x)j~vv $,(x)F~~ 1 + j i ( 4.16) 

ie 
*A 2 [ ?+Jr%,(x) - ~2(x)yvqd 1 2y4(x, 0) 

Let us proceed now to the general case when the electromagne- 

tic field is included in our dynamical system. As dynamical va- 

riables describing this field on the physical plane r=O we choose 

the quantities 

(Au (xl, cc Tu4 (x,01) 
which are remaining independent variables 

is switched on (cf. (2.33)). 

(4.17) 

if even an interaction 

Next, adding the term LfilAX!IIELL= -$F,(x) F'v(x) to (4.15), 

we may write the following action integral for our system: 

= Jds [LmxWELL + L,,,,, + L INT (41 = (4.15) 

=J d4.L TOTAL( x' 



- 42 - FERMILAR-Pub-78/70-THY 

Further, one should realize that the dynamical variables 

tia (4 , $,k) and p4 ho) F are not completely independent. They 

are subjected to the constraint that appears as a. result of pro- 

jecting S-sector equation (4.9a) onto the plane r=O* 

9 ,,(x,O)= + J&O) 

where, because of (3.3Za), (3.37), (3.40) and (3.41) 

(4.19) 

l,(x,~)=~1(x’Y~~rz(x)+~.2(x)Y~~~(x) (4.20) 

Now the motion equations for our fields emerge from a sta- 

tionary condition of the functional 

J d4xrL TOTAL (x)+E’(x)ti %Jp (x,0)1 (4.21) 

where 5'(x) are Lagrange multipliers. Thus, one obtains 

---y5 # Fpv (x) +bl (x)- 

e sin0 
- -0oL op” Fpv (x)$~(x)- (x,O)+)+$~~ 

alp (x,0’ 

4 J&(X) ' 

(4.22a) 

*Cf. Eq. (2.30a). Instead of Eq. (2.30b) we have now 

26,(x,0) - i$-- B, (x,0) + i 
J4k) 
J x,(x) 

= ef 1, (x,0’ 

Similar to the free case, this relation due to our choice of 
independent variables, is not a constraint but just describes an 

arbitrary gauge of the electromagnetic 4-potential A,(X) , -- 
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ie cos8, 
(ia-e,#(x)--m,)~~(X)‘~-- y5 c+’ F&) s$ ( x) - 

(4.22b) 

eosin9 
4 

o~““Fp,(x)~2(x)+ ~~;,~~*,x,O)9,(x)+~f~ -f?$$; 
2 x 

---.----=e, z r~,(X)y~+a(X)- y” apV(x, 

JXV a=l,2 
-$“-(~a(x)Y5.pv 9$(x))+ 

sin0 a 
+--.-XL &;a (x)dlV $Ja 2 (x) I: 

(4.22~) 

(4 .‘23) 

These equations, completed by the constraint (4.19), can 

be used to determine the funct.ions &,(x) and A,(x) . Thus, 

altogether these are the 4-sector equations in question that 

should play the same role in our approach as the Dirac-Maxwell 

equations (1.4a)-(1.4b) do in the conventional theory of 

electromagnetic interactions. It is instructive to write these 
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generalized Dirac-Maxwell equations once more, in terms of 

es(x) , Ga (x) > Apt4 and FpJx) only, introducing explicitly 

the fundamental length e : 

i et coseo 
(id-e,& -mo)c$ (xl=+ 

4 
~~0”” F,,(x)~~ (d- 

-e,esine e2e2 
--e~‘“FpY(~)+l(~)- -$- 
4 [(~~(x)Y~~2(x)+Ic;22(x).Ylllbl( 

+(rL,(x~Yll~rl(x~-~2(x~YIL~2(x~)y~llr2(x)l; 

(id-e,~-m,)~2(x)=,--- 
i gc0se, 

4 
y5.~vFpJx)~22(x)- 

x))Yp$L1(x) + 

(4.24a) 

(4.24b) 

JF'"(x) ---- = e o tj"(x)+ ecose 
JX" 

Oj&v (4 + PsinDojpm,, (~11 

(4.24~) I 
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where 

sine = 0 tonhp 0 12 = -&a~% 

mOe 
(4. 25~) 

case, = 1 J-2 
coshp/ 2 

l+JixYy- 

and 

j”(x) =a~2;ia(x)~p$,(x) 
(4.26) 

(4.27) 

(4.28) 

From Eqs. (4.24a)-(4.24b) one can derive the continuity 

equation for the total electromagnetic current (4.26) of normal 

and abnormal particles: 

y(x) 0 -_= 
JXF (4.29) 

Note that the currents (4.27)-(4.28) satisfy Eq. (4.29) 

independently of any equation of motion. 
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Evidently, as e* 0 our equations (4.24a.), (4.24b) and 

(4.24~) turn into Dirac-Maxwell equations (1.4a)-(1.4b) up to 

an additional degeneracy connected with SUT( &symmetry. Let 

us emphasize that the non-linear spinor terms, originated by 

the 7 -photon interaction, violate this symmetry in Eqs. 

(4.24a)-(4.24b),At that, the associated coupling consta nts 

are relatively small(-e2e2). 

It is easily seen that the lagrangian density correspond- 

: ing to Eqs. (4.24a), (4.24b) and (4.24~) will coincide with 

L,,,(X) from (4.18) if the variable p,(~,O) in this expression 

is substituted using (4.19). So 

L ,,,(x)~-$F~~(x)F~~(x) + G(x)(i$--m)‘&‘(x) - 

- e, @(x)Y’ YAP - ~~~~~e,~(.)y5~po~(.)Fi"v(~)+ 

+ ?J sinOo)u(x) 0’” y(dFp,, (xl +~~~2(~(~)~~y~(~(~)~1y~l~(~)) , 

(4.30) 
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where 

V(x) = (yJ ; O1 = (“l 1) ’ 03 = (: “li _ 

V. DISCUSSION AND INTERPRETATION 

Let us start with SW, (2)~symmetry. It is dear that the theory developed 

here, after an appropriate quantization procedure, has to be applied first to a 

description of the electromagnetic interactions of leptons, since this is the arena of 

the extremely precise tests of QED. As is well known, the electron and muon have 

been found, up to now, to have identical electromagnetic properties, described 

universally by the Dirac-Maxwell equations (1.4a)-(1.4b)*), the only difference 

being the value of the mass. The origin of this universality is an old puzzle. 

But now we seem to be in a position to say something about it. In our 

scheme, the new flavor, connected with the invariance requirement under T- 

inversion (see Sec. III), is deeply ingrained. In the 5-sector, it is expressed by the 

obligatory use of &component spinors. On the &sector Ievel, we have inevitably 

equations of motion for the pair of spinor fields $(x) and Q,(x). 

Therefore, let us interpret these two fields as follows: 

J, ,(x) = e 

lJ,(x) = IJ (5.1) 

* 
Tine renormaiization technicalities of electron QED coincide with those of muon 

QED. 
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Now we have a right to say that the new approach is basically ue-universal.* 

The theory will be damaged if, for instance, the muon field $2(x) is removed. 

In the 4-sector framework ue-universality is extended to SUT(2)-symmetry 

when one neglects the T-photon interaction terms. But even in the presence of 

these terms, the interactions of the electron and muon with the ordinary photons 

(the conventional minimal coupling, EDM and MDM interactions) remain identical. 

If all terms containing the fundamental length in Eqs. (4.34a), (4.34b) and 

(4.34~) are omitted then two copies of the Dirac-Maxwell equations (1.4a)-(1.4b) 

emerge, one to provide the conventional QED description of the electron and the 

other for the same purpose concerning the muon. In this approximation the masses 

of the electron and of the muon are equal. 

It is tempting to speculate on the ~-photon interaction as a possible origin of 

the muon-electron mass difference. ** Further, this interaction should give rise to 

the decay*** 

*The recently discovered -r-lepton needs a partner to complete another SU, (2)- 

doublet. The neutrinos ve and vualready can be treated as an SIJT (2)-doublet. Let 

us point out that the new flavor described by SU,(Z) is not, of course, a privilege of 

leptons only. It is a new universal degree of freedom which is intrinsically 

connected with the fundamental length and which is relevant to all particles 

including hadrons, hypothetical intermediate W-boson and so on. As for hadrons, 

this flavor has to be introduced on the quark level. So one is now asked to believe 

in the existence of electron-type and muon-type quarks, probably with the large 

difference in their masses. Perhaps to explain the existence of the T-family, and 

possible similar discoveries in the future, one should think along these lines. 

Further, we can also expect particles that will be components of SUr(2)-triplets 

and so on. 

** 
The author is grateful to Prof. R. Feynman for a valuable discussion of this point. 

**Y 
Note, that in this reaction, parity is conserving. 
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p +3e (5.2) 

and, effectively, to such processes as 

u +ey 

p + 2 + e + 2, etc. 

(5.3a) 

63b) 

(5.3c) 

The most accurate experiment on a search for the decay (5.2) gives the following 

upper bound for its branching ratio 38 : 

lY v +3e) < 1.9x 10 -9 
iT-p%m (5.41 

If we shall forget for a while that our scheme is not yet secondary quantized, 

then we can estimate, with the help of (5.41, the allowed magnitude of the coupling 

constant in the T-photon interaction, i.e. the upper bound* of the fundamental 

length: 

R 5 3 x IO-l8 cm 

This is consistent with the recent data on the decay (5.3aj3’ 

$-$2& _’ 2.0 x 10 -10 

. (5.5) 

(5.6) 

- 

*Let us pay attention that its magnitude is three orders less than in (1.2). 



-5O- FERMILAB-Pub-78/70-THY 

In our scheme the considered reaction is described by the graph 

f 

It is interesting to notice that the r-photon interaction is characterized by the 

finite range although the r-photon field is massless. 30 One should realize 

that, due to this interaction, the picture of the electromagnetic phenomena will 

change drastically at super-high energies > iM/eo. 

- As explained earlier3’ our approach to a formulation of the electromagnetic 

interaction theory with the de Sitter momentum space in terms of 5-dimensional 

quantities ( a/( 2x”), BM(x, r ), <N( x,r 1, y(x, r.), etc.) is an alternative to the 

manifestly &dimensional formalism based on 4-dimensional Fourier analysis on the 

hyperboloid (1.19). The relevant configurational 4-space turns out to be continuous 

along the time direction and quantized along any space axis. * 4,9,20-21 For 

instance, the analog of the Yukawa potential, produced by the propagator (c.f. Eq. 

(3.7aN 

D’(p) = 1 
2p4 - 2 cash u + io ’ 

(5.71 

is of the form 

VyuKAWA(n) = const. eiu!nrl’ ; n=0123 2 , , ,**. (5.8) 

*In the euclidean formulation, the curved 4-momentum space becomes compact 

and, hence, the configurational 4-space is totally quantized. 
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So the space which separates particles possesses some granular structure that 

can be treated as one of the novel properties of the vacuum in this version of a 

theory. Meanwhile, from the 5-dimensional approach we know that the charged 

fields q,(x) and $,(x), due to the T-photon mediation, are interacting even if 

Au(x) z 0. Supposing that both approaches are equivalent to each other* we might 

figure that the T-photon interaction is caused by the scattering of our particles 0” 

granularities of the space structure. In other words, the T-photon may be treated 

as a quasiparticle which, in the framework of the 5-dimensional approach, is a 

specific substitute for the granularity of space. 

Let us consider now the MDM and EDM interactions emerged in our scheme. 

Introducing the standard notation (eolc)/(4mo)op” F~“(x)$~(x) for Pauli terms in 

Eqs. (4.34a)-(4.34b) we obtain, using (4.35), the following expression for the 

intrinsic anomalous magnetic moment of the charged Dirac particle 

K = coshuo-1 z 

m’ 
= 1+2-l 

I-- M2 

The covariant EDM-term is less familiar. Therefore, we continue our analysis 

non-relativistically. Assuming that our Dirac fields interact with an external 

electromagnetic field Au(x) such that 

* 
The mapping between these two formalisms is carried out by the Fourier 

transforms similar to 

I S(p2 - P42 + l)$p, p )e 
4 i(px)d5p 

p4>0 

, 

I s(P2 - P42 + l)Ji(p, p4)ei(px)d5p ; (px) = POxO _ 6: 
p4 <o 

. 
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A’(x) = 4(r) = arbitrary 

A(x) = !+[‘I XT] ; i? = const. t (5.10) 

and expanding Eqs. (4.34a)-(4.34b) in powers of I/c, one finds the following 

generalized Pauli equation: 

iM gT @a(:, t) = 
[ 

$$ - 
+ + + 

0 

eo$(r) - e. (L +2gz’,H + 
e. cos B. 

0 

Mc (5 - 5’1 Q .(:, 

(a = 1,2) (5.11) 

where 

~~$ = -ifi-$ ; t : [Fx$~] ; $$=-I$ 

E = - $ Nr) 

and 

rn2 
g = 2(1+K) = 2 l+O 

f- M2 

=Os e. -AS 
0 

Further, writing the EDM-interaction in the canonical form 

(5.12) 

(5.13) 

u EDM = - (3 * E, , (5.14) 
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one obtains the following expression for the intrinsic electric dipole moment of the 

charged Dirac particle: 

it = - e. =O;fo S = _ eo!?+ cos2eo g . (5.15) 

Let us point out that EDM z is antiparallel to the particle magnetic moment 

Eq. (5.11) holds in the general case of arbitrary ratio between the particle mass m. 

and the fundamental mass M. For leptons, anyhow, 

m 
-2 << 1 M 

From here and from (5.13) and (5.16) it follows that 

lepton 2M2 

(5.17) 

(5.18,) 

(5.18b) 

Comparing (5.18a) with the current theoretical and experimental uncertainties in 

this quantity 40 

= (2 + 6) x 10-l’ 
electron 

Ag$ 
( ) = (IO f12) x 1o-y 

muon 
(5.19) 
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we obtain one more upper bound for the fundamental length*: 

k ,< 2.6 x IO-l7 cm (5.20) 

that is not very far from (5.5). 

Using (5.51, (5.20) and (5.18b) we can conclude that the upper bound for lepton 

EDM, in order of magnitude, is at least 

Ia 2 1(10-17 + 10-18)cm ] e 
0 

(5.21) 

This is consistent with the old experimental data on a direct measurement of the 

electron and muon EDM 41 with observed shifts of atomic levels, 41 . 

violation effects in atom:,42-43 

with parity 

with the recent search for the parity violation in 

the polarized electron scattering. 44 

On the other hand, a number of experiments was performed on indirect 

estimation of the electron EDlM through the measurements of EDM that it induces 

in atoms. The results obtained are the following: 

( (3 x 1O-24 cm)e (45) 

= [CO 7 *2 2) x 10’24cm]e (46) 

(5.22a) 

- * O (47) 

(5.2213) 

= [(I.9 k3.4) X 10T2’ cm ] e 

= [ (8.1 + 11.6) x 1O-23 cm ]~~8) 

(5.22~) 

. (5.22d) 

The results (5.22a)-(5.22c)** lie in the same range of values as the latest measured 

upper bound for the neutron EDM49 

*To our knowledge, it is the first time a highly precise experiment, designed for a 

test of a validity of QED, is used to estimate the fundamental length. 

**The method employed in Ref. 48 is independent of that used in Refs. 45-47. 
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1 2 ;ineutron ( 3 x 1O-24 cm 

From (5.18b) and (5.22a)-(5.22c) one obtains a considerably more restrictive bound 

on R than in (5.5): 

R _<10m2” - 1O-23 cm . (5.24) 

Assuming that the electromagnetic interactions of quarks are described by our 

equations (4.34a)-(4.34c), a similar estimate for R can be established from (5.23) in ~ 

the framework of the relativistic quark model. 50, 

As is known,5’ the existence of non-zero EDM for elementary particles would 

be direct evidence of the violation of the CP-symmetry. Thus, according to our 

approach, the mechanism of the CP-violation might be purely electromagnetic if 

the theory of the electromagnetic interactions is based on the fundamental length 

hypothesis.* It does not need any comment that the experimental discovery of the 

particle EDM would be of great importance for the present theory. Concerning 

leptons which have not undergone strong interactions, one should realize that, due 

to (5.18b), the measurement of their EDM is the straight measurement of the 

fundamental length. 

Since in this approach even “bare” Dirac particles possess EDM and anomalous 

MDM, it means that they are extended objects having some structure.** As follows 

from (5.15), (5.16) and (5.13), if the ratio mo/lM runs from 0 tom, 1 “d an 1 d 151 vary 

in the following limits 

*As was pointed out3’ non-abelian gauge theories can be reformulated in our terms 

as well. It would be interesting to see, for instance, new versions of the QCD and 

the Salam-Weinberg model, containing the fundamental length. V/hat situation will 

finally take place in these theories concerning CP-symmetry? 

YY 
It somehow testifies to the existence of the ultraviolet cut-off in our scheme 

(see the next Section). 
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eH 
0 eK 
2mc 2 IGIl& 

0 

et5 eP, 
-L-L-0 
2Mc - 2 

(5.25) 

(5.26) 

plays the role of a minimal magneton attainable only when 

m 
0 

>> rM (5.27) 

Hence, superheavy Dirac particles, if such objects somewhere exist*, should serve 

not only as sources of the static Coulomb field but also as sources of the 

static magnetic field, produced by the MDM 

en 0 
2Mc zf (5.28) 

* 
C.f. the “maximon” considered by Markov.52 
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VI. CONCLUDING REMARKS 

In this paper we derived generalized classical equations of motion for the 

interacting electromagnetic and Dirac fields, containing the fundamental length as 

a new universal s&e. The secondary quantization procedure, the appropriate 

diagram techniques, the renormalization, etc. will be worked out separately.37 

However, in a preliminary manner, we may say that the problem of ultraviolet 

divergences seems to lose here its acuteness. Although the non-minimal interac-- 

tions in Eqs. (4.34a)-(4.34c), conventionally speaking, are non-renormalizable, the 

underlying symmetry with respect to larger gauge group leads to a situation which 

is similar to what one faces in so-called superrenormalizable theories. As a result, 

the renormalization procedure in this case should deal with finite quantities only. 

Such things could be expected from the comparison of our 5-dimensional 

approach with the 4-dimensional one 19-29 that we outlined briefly in Sec. V. 

Indeed, due to (5.8), the “scalar” Coulomb potential in the Y-dimensional framework 

reads 

‘COULOMB = ‘s 

This expression is free of singularities at small distances. It is already some 

indication of an absence of divergences in the relevant field theory. Furthermore, 

in the euclidean formulation of the 4-dimensional approach one needs to use the 

compact p-space (see footnote on p. 50): 

PI2 + P22 + P32 +p42 +p52 = 1 

P5 = ipo (6.2) 
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In other words, the theory intrinsically contains a universal cut-off. Formulae like 

(5.8) and (6.1) are just one of the manifestations of this cut-off. 

Turning back to the 5-dimensional formalism we would like to emphasize that 

in the presence of an interaction the de Sitterian constraint of the (0 -I)-type 

remains true only for the gauge functions X (x, T) and the T-photon field 

A4(x, ~1 = eirB4(x, T). The Dirac field Y[x, r), for instance, satisfies instead the 

constraint (4.4b). As a matter of fact, the relation (4.4b) plays the key role in OUT 

approach because it combines three important things altogether: 

i)de Sitterian geometry of p-space when an interaction is turned off (e. + 0); 

ii) generalized minimal substitution law based on the new gauge group; 

iii) preferable role of the physical plane T = 0 that originates the correspon- 

dence principle. 

Putting 

eoBMyl(x, T 1 

we can write (4.4b) as 

R 1102 -h2- r142+ 1 Y(x, T) ) 1 TO . T =o 

(6.3) 

(6.4) 

So the main geometrical point of our fundamental length hypothesis may be 

adjusted as follows: the “generalized momentum ” II is declared the de Sitterian 

vector in a sense of relation (6.4). If an interaction is switched off then II coincides 

with the ordinary momentum which belongs to the de Sitter space (1.19) as is due to 

(3.22). Hence, finally, our 5-scheme is a local gauge theory of elec;romagnetic 

interactions based on the assumption that free fields are described in terms of the 

de Sitter p-space and the “generalized momentum” II operates as de Sitterian 
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vector on the physical plane r= 0. As was po~inted out in Sec. I, in the free case 

the 3-dimensionality of the mass shell screens the difference in a geometrical 

structure between 4-dimensional Minkowsky p-space and 4-dimensional de Sitter p- 

space. The only de Sitterian attribute that survives and makes one theory different 

from another is the flavor labelling the normal (electron-type) and abnormal (muon- 

type) fields. 

Our last remark concerns a global structure of the de Sitter p-space. As is 

known,53 two spaces of constant curvature may possess identical metric properties 

but differ by topological ones. For instance, if on the surface (1.19) the 

diametrically opposite points (pot “p, p4) and t-p’, -“p, -p4) will be identified, we 

shall obtain the so-called “pseudoelliptic” de Sitter space that possesses a more 

exquisite topology than the initial one, called “pseudospherical” de Sitter space. 

Pseudoelliptic p-space was employed in first attempts to use de Sitter 

geometry in the field theory. x59y’1 It would be interesting to see what changes will 

occur in our formalism if we adopt this new topology. Certainly, the concept of 

normal and abnormal fields and definitions of discrete symmetry transformations 

(C, P, T and CPT) should be modified in such a scheme. 

I 
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